Experimental Features

Experimental Features

This section contains features that are currently in development and testing. These modules extend halo forge beyond code generation training into new domains.

Status: These features are functional but may change significantly as we iterate on the designs.

Current Version: v1.1.0


Available Experimental Modules

Vision-Language Training (Phase 3)

Train vision-language models using RLVR with perception-aware verification.

ComponentStatusDescription
VLMRAFTTrainerBetaRAFT training for VLMs
VisionVerifierBetaMulti-stage verification
PerceptionCheckerBetaYOLOv8 + EasyOCR
Dataset LoadersBetaTextVQA, DocVQA, ChartQA
# Validate configuration first
halo-forge vlm train --model Qwen/Qwen2-VL-7B-Instruct --dataset textvqa --dry-run

# Then run training
halo-forge vlm train --model Qwen/Qwen2-VL-7B-Instruct --dataset textvqa

Full VLM Documentation


Audio-Language Training (Phase 4)

Train speech and audio models using RLVR with ASR/TTS verification.

ComponentStatusDescription
AudioRAFTTrainerBetaRAFT training for audio models
AudioVerifierBetaMulti-task verification
ASRCheckerBetaWord Error Rate (WER) evaluation
TTSCheckerBetaQuality and intelligibility scoring
Dataset LoadersBetaLibriSpeech, Common Voice, VoxPopuli
# List available datasets
halo-forge audio datasets

# Validate configuration
halo-forge audio train --model openai/whisper-small --dataset librispeech --dry-run

# Train with ASR verification
halo-forge audio train --model openai/whisper-small --dataset librispeech --cycles 3

Full Audio Documentation


Reasoning & Math Training (Phase 5)

Train models on mathematical and logical reasoning with symbolic verification.

ComponentStatusDescription
ReasoningRAFTTrainerBetaRAFT training for reasoning
ReasoningVerifierBetaMulti-method verification
MathVerifierBetaSymPy symbolic evaluation
Dataset LoadersBetaGSM8K, MATH, ARC
# List available datasets
halo-forge reasoning datasets

# Train on GSM8K
halo-forge reasoning train --model Qwen/Qwen2.5-3B-Instruct --dataset gsm8k --cycles 3

Full Reasoning Documentation


Agentic / Tool Calling (Phase 6)

Train models to generate structured function calls with schema-aware verification.

ComponentStatusDescription
AgenticRAFTTrainerBetaRAFT training for tool calling
ToolCallingVerifierBetaJSON schema validation
HermesFormatterBetaHermes chat format conversion
Dataset LoadersBetaxLAM, Glaive, ToolBench

Key Features:

  • Graduated reward structure (partial credit for valid JSON, schema compliance)
  • Hermes format output (XML-style tags in ChatML, compatible with Qwen/Llama)
  • Supports multi-turn conversations with tool results
# List available datasets
halo-forge agentic datasets

# Validate configuration
halo-forge agentic train --model Qwen/Qwen2.5-7B-Instruct --dataset xlam --dry-run

# Train on xLAM dataset
halo-forge agentic train --model Qwen/Qwen2.5-7B-Instruct --dataset xlam --cycles 3

Full Agentic Documentation


Inference Optimization (Phase 2)

Optimize trained models for deployment without full retraining.

ComponentStatusDescription
InferenceOptimizerBetaEnd-to-end optimization
QATTrainerAlphaQuantization-aware training
GGUFExporterBetaExport for llama.cpp
ONNXExporterAlphaCross-platform export
# Check dependencies and validate config
halo-forge inference optimize --model models/trained --dry-run

# Export to GGUF
halo-forge inference export --model models/trained --format gguf --output model.gguf

Full Inference Documentation


Liquid AI LFM2.5 Models

Liquid AI’s LFM2.5 family is experimentally supported for RAFT training. These models feature a hybrid convolutional architecture optimized for edge deployment.

ModelParametersStatusNotes
LiquidAI/LFM2.5-1.2B-Base1.2BBetaFor custom fine-tuning
LiquidAI/LFM2.5-1.2B-Instruct1.2BBetaGeneral instruction following
LiquidAI/LFM2.5-VL-1.6B1.6BAlphaVision-language (untested)

Quick test:

halo-forge benchmark run \
  --model LiquidAI/LFM2.5-1.2B-Instruct \
  --prompts data/prompts.jsonl \
  --verifier mingw \
  --samples 5

Initial results (5 Windows API prompts, 3 samples each):

  • pass@1: 33%
  • Compile rate: 40-60%
  • PEFT/LoRA: Compatible
  • Generation speed: ~47s per batch of 4

Stability Levels

LevelMeaning
AlphaEarly development, API may change significantly
BetaFeature complete, API mostly stable
StableProduction ready, in main documentation

Feedback

These features are actively developed based on testing results. If you encounter issues or have suggestions:

  1. Check the Troubleshooting guide
  2. Review the Changelog for recent changes
  3. Open an issue on GitHub with reproduction steps

Planned Features

FeatureStatus
Full Testing / ArtifactsIn Progress
Cross-Platform GUIPlanned