Experimental Features
Experimental Features
This section contains features that are currently in development and testing. These modules extend halo forge beyond code generation training into new domains.
Status: These features are functional but may change significantly as we iterate on the designs.
Current Version: v1.1.0
Available Experimental Modules
Vision-Language Training (Phase 3)
Train vision-language models using RLVR with perception-aware verification.
| Component | Status | Description |
|---|---|---|
| VLMRAFTTrainer | Beta | RAFT training for VLMs |
| VisionVerifier | Beta | Multi-stage verification |
| PerceptionChecker | Beta | YOLOv8 + EasyOCR |
| Dataset Loaders | Beta | TextVQA, DocVQA, ChartQA |
# Validate configuration first
halo-forge vlm train --model Qwen/Qwen2-VL-7B-Instruct --dataset textvqa --dry-run
# Then run training
halo-forge vlm train --model Qwen/Qwen2-VL-7B-Instruct --dataset textvqa
Audio-Language Training (Phase 4)
Train speech and audio models using RLVR with ASR/TTS verification.
| Component | Status | Description |
|---|---|---|
| AudioRAFTTrainer | Beta | RAFT training for audio models |
| AudioVerifier | Beta | Multi-task verification |
| ASRChecker | Beta | Word Error Rate (WER) evaluation |
| TTSChecker | Beta | Quality and intelligibility scoring |
| Dataset Loaders | Beta | LibriSpeech, Common Voice, VoxPopuli |
# List available datasets
halo-forge audio datasets
# Validate configuration
halo-forge audio train --model openai/whisper-small --dataset librispeech --dry-run
# Train with ASR verification
halo-forge audio train --model openai/whisper-small --dataset librispeech --cycles 3
Reasoning & Math Training (Phase 5)
Train models on mathematical and logical reasoning with symbolic verification.
| Component | Status | Description |
|---|---|---|
| ReasoningRAFTTrainer | Beta | RAFT training for reasoning |
| ReasoningVerifier | Beta | Multi-method verification |
| MathVerifier | Beta | SymPy symbolic evaluation |
| Dataset Loaders | Beta | GSM8K, MATH, ARC |
# List available datasets
halo-forge reasoning datasets
# Train on GSM8K
halo-forge reasoning train --model Qwen/Qwen2.5-3B-Instruct --dataset gsm8k --cycles 3
Agentic / Tool Calling (Phase 6)
Train models to generate structured function calls with schema-aware verification.
| Component | Status | Description |
|---|---|---|
| AgenticRAFTTrainer | Beta | RAFT training for tool calling |
| ToolCallingVerifier | Beta | JSON schema validation |
| HermesFormatter | Beta | Hermes chat format conversion |
| Dataset Loaders | Beta | xLAM, Glaive, ToolBench |
Key Features:
- Graduated reward structure (partial credit for valid JSON, schema compliance)
- Hermes format output (XML-style tags in ChatML, compatible with Qwen/Llama)
- Supports multi-turn conversations with tool results
# List available datasets
halo-forge agentic datasets
# Validate configuration
halo-forge agentic train --model Qwen/Qwen2.5-7B-Instruct --dataset xlam --dry-run
# Train on xLAM dataset
halo-forge agentic train --model Qwen/Qwen2.5-7B-Instruct --dataset xlam --cycles 3
Inference Optimization (Phase 2)
Optimize trained models for deployment without full retraining.
| Component | Status | Description |
|---|---|---|
| InferenceOptimizer | Beta | End-to-end optimization |
| QATTrainer | Alpha | Quantization-aware training |
| GGUFExporter | Beta | Export for llama.cpp |
| ONNXExporter | Alpha | Cross-platform export |
# Check dependencies and validate config
halo-forge inference optimize --model models/trained --dry-run
# Export to GGUF
halo-forge inference export --model models/trained --format gguf --output model.gguf
Liquid AI LFM2.5 Models
Liquid AI’s LFM2.5 family is experimentally supported for RAFT training. These models feature a hybrid convolutional architecture optimized for edge deployment.
| Model | Parameters | Status | Notes |
|---|---|---|---|
| LiquidAI/LFM2.5-1.2B-Base | 1.2B | Beta | For custom fine-tuning |
| LiquidAI/LFM2.5-1.2B-Instruct | 1.2B | Beta | General instruction following |
| LiquidAI/LFM2.5-VL-1.6B | 1.6B | Alpha | Vision-language (untested) |
Quick test:
halo-forge benchmark run \
--model LiquidAI/LFM2.5-1.2B-Instruct \
--prompts data/prompts.jsonl \
--verifier mingw \
--samples 5
Initial results (5 Windows API prompts, 3 samples each):
- pass@1: 33%
- Compile rate: 40-60%
- PEFT/LoRA: Compatible
- Generation speed: ~47s per batch of 4
Stability Levels
| Level | Meaning |
|---|---|
| Alpha | Early development, API may change significantly |
| Beta | Feature complete, API mostly stable |
| Stable | Production ready, in main documentation |
Feedback
These features are actively developed based on testing results. If you encounter issues or have suggestions:
- Check the Troubleshooting guide
- Review the Changelog for recent changes
- Open an issue on GitHub with reproduction steps
Planned Features
| Feature | Status |
|---|---|
| Full Testing / Artifacts | In Progress |
| Cross-Platform GUI | Planned |